Primitive-Collections/src/builder/resources/speiger/assets/collections/templates/utils/Arrays.template

1596 lines
67 KiB
Plaintext
Raw Normal View History

package speiger.src.collections.PACKAGE.utils;
import java.util.Arrays;
import java.util.Random;
import java.util.concurrent.RecursiveAction;
#if !TYPE_OBJECT
2020-11-30 02:27:58 +01:00
import speiger.src.collections.PACKAGE.functions.COMPARATOR;
#else
import java.util.Comparator;
2020-11-30 02:27:58 +01:00
#endif
import speiger.src.collections.PACKAGE.collections.ITERATOR;
import speiger.src.collections.PACKAGE.lists.ARRAY_LIST;
import speiger.src.collections.PACKAGE.utils.ITERATORS;
2020-11-30 02:27:58 +01:00
import speiger.src.collections.utils.SanityChecks;
/**
* A Helper class for Arrays
*/
public class ARRAYS
{
/** Default Limit for Insertion/Selection Sort */
2020-11-30 02:27:58 +01:00
public static final int BASE_THRESHOLD = 16;
/** Default Threshold for Multithreaded Sorting Algorythm options*/
2020-11-30 02:27:58 +01:00
public static final int PARALLEL_THRESHOLD = 8192;
#if !TYPE_OBJECT
/** Empty Array Reference used for Uninitialized Collections */
public static final KEY_TYPE[] EMPTY_ARRAY = new KEY_TYPE[0];
/**
* A Helper function to convert a Primitive Array to a CLASS_TYPE Array.
* @param a the array that should be converted
* @return a CLASS_TYPE Array of the input array.
*/
public static CLASS_TYPE[] wrap(KEY_TYPE[] a) {
return wrap(a, 0, a.length);
}
/**
* A Helper function to convert a Primitive Array to a CLASS_TYPE Array.
* @param a the array that should be converted
* @param length the maximum length that should be coverted
* @return a CLASS_TYPE Array of the input array.
*/
public static CLASS_TYPE[] wrap(KEY_TYPE[] a, int length) {
return wrap(a, 0, length);
}
/**
* A Helper function to convert a Primitive Array to a CLASS_TYPE Array.
* @param a the array that should be converted
* @param offset the starting offset of the inputarray
* @param length the maximum length that should be coverted
* @return a CLASS_TYPE Array of the input array.
*/
public static CLASS_TYPE[] wrap(KEY_TYPE[] a, int offset, int length) {
SanityChecks.checkArrayCapacity(a.length, offset, length);
CLASS_TYPE[] result = new CLASS_TYPE[length];
for(int i = offset;i<length;i++)
result[i] = KEY_TO_OBJ(a[i]);
return result;
}
/**
* A Helper function to convert a CLASS_TYPE Array to a KEY_TYPE Array.
* @param a the array that should be converted
* @return a KEY_TYPE Array of the input array.
*/
public static KEY_TYPE[] unwrap(CLASS_TYPE[] a) {
return unwrap(a, 0, a.length);
}
/**
* A Helper function to convert a CLASS_TYPE Array to a KEY_TYPE Array.
* @param a the array that should be converted
* @param length the maximum length that should be coverted
* @return a KEY_TYPE Array of the input array.
*/
public static KEY_TYPE[] unwrap(CLASS_TYPE[] a, int length) {
return unwrap(a, 0, length);
}
/**
* A Helper function to convert a CLASS_TYPE Array to a KEY_TYPE Array.
* @param a the array that should be converted
* @param offset the starting offset of the inputarray
* @param length the maximum length that should be coverted
* @return a KEY_TYPE Array of the input array.
*/
public static KEY_TYPE[] unwrap(CLASS_TYPE[] a, int offset, int length) {
SanityChecks.checkArrayCapacity(a.length, offset, length);
KEY_TYPE[] result = new KEY_TYPE[length];
for(int i = offset;i<length;i++)
result[i] = OBJ_TO_KEY(a[i]);
return result;
}
#else
/** Empty Array Reference used for Uninitialized Collections */
public static final Object[] EMPTY_ARRAY = new Object[0];
/**
* Function to create a new Array of a given size
* @param clz the class type of array that is requested
* @param length the lenght the array should be.
* @ArrayType(T)
* @return a Array with the requested type and length
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] newArray(Class<KEY_TYPE> clz, int length) {
if(clz == Object.class) return (KEY_TYPE[])new Object[length];
return (KEY_TYPE[]) java.lang.reflect.Array.newInstance(clz, length);
}
#endif
/**
* A Helper function that pours all elements of a iterator into a Array
* @param iter the elements that should be gathered.
* @ArrayType(T)
* @return array with all elements of the iterator
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] pour(ITERATOR KEY_GENERIC_TYPE iter) {
return pour(iter, Integer.MAX_VALUE);
}
/**
* A Helper function that pours all elements of a iterator into a Array
* @param iter the elements that should be gathered.
* @param max how many elements should be added
* @ArrayType(T)
* @return array with all requested elements of the iterator
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] pour(ITERATOR KEY_GENERIC_TYPE iter, int max) {
ARRAY_LIST KEY_GENERIC_TYPE list = new ARRAY_LISTBRACES();
ITERATORS.pour(iter, list, max);
return list.TO_ARRAY(NEW_KEY_ARRAY(list.size()));
}
/**
* Method to validate if the current value is the lowest value in the heap
* @param data the current heap.
* @param size the size of the heap
* @param index the index that should be validated
* @param comp the comparator to sort the heap. Can be null
* @ArrayType(T)
* @return the index the element was shifted to
*/
public static GENERIC_KEY_BRACES int shiftDown(KEY_TYPE[] data, int size, int index, COMPARATOR KEY_SUPER_GENERIC_TYPE comp) {
int half = size >>> 1;
KEY_TYPE value = data[index];
if(comp != null) {
while(index < half) {
int child = (index << 1) + 1;
KEY_TYPE childValue = data[child];
int right = child+1;
if(right < size && comp.compare(data[right], childValue) < 0) childValue = data[child = right];
if(comp.compare(value, childValue) <= 0) break;
data[index] = childValue;
index = child;
}
}
else {
while(index < half) {
int child = (index << 1) + 1;
KEY_TYPE childValue = data[child];
int right = child+1;
if(right < size && COMPAREABLE_TO_KEY(data[right], childValue) < 0) childValue = data[child = right];
if(COMPAREABLE_TO_KEY(value, childValue) <= 0) break;
data[index] = childValue;
index = child;
}
}
data[index] = value;
return index;
}
/**
* Method to sort a specific value into the heap.
* @param data the heap itself.
* @param index that should be heapified.
* @param comp the comparator to sort the heap. Can be null
* @ArrayType(T)
* @return the index the element was shifted to
*/
public static GENERIC_KEY_BRACES int shiftUp(KEY_TYPE[] data, int index, COMPARATOR KEY_SUPER_GENERIC_TYPE comp) {
KEY_TYPE value = data[index];
if(comp != null) {
while(index > 0) {
int parent = (index - 1) >>> 1;
KEY_TYPE parentValue = data[parent];
if(comp.compare(value, parentValue) >= 0) break;
data[index] = parentValue;
index = parent;
}
}
else {
while(index > 0) {
int parent = (index - 1) >>> 1;
KEY_TYPE parentValue = data[parent];
if(COMPAREABLE_TO_KEY(value, parentValue) >= 0) break;
data[index] = parentValue;
index = parent;
}
}
data[index] = value;
return index;
}
/**
* Helper function to create a Heap out of an array.
* @param data the array to heapify
* @param size the current size of elements within the array.
* @param comp the Comparator to sort the array. Can be null
* @ArrayType(T)
* @return the input array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] heapify(KEY_TYPE[] data, int size, COMPARATOR KEY_SUPER_GENERIC_TYPE comp) {
for(int i = (size >>> 1) - 1;i>=0;shiftDown(data, size, i--, comp));
return data;
}
/**
* Simple Shuffle method for Arrays.
* @param array the elements that should be shuffled
* @ArrayType(T)
* @note This uses the SanityChecks#getRandom
* @return the provided sorted array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] shuffle(KEY_TYPE[] array) {
return shuffle(array, SanityChecks.getRandom());
}
/**
* Simple Shuffle method for Arrays.
* @param array the elements that should be shuffled
* @param length the length of the array
* @ArrayType(T)
* @note This uses the SanityChecks#getRandom
* @return the provided sorted array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] shuffle(KEY_TYPE[] array, int length) {
return shuffle(array, 0, length, SanityChecks.getRandom());
}
/**
* Simple Shuffle method for Arrays.
* @param array the elements that should be shuffled
* @param offset the start array
* @param length the length of the array
* @ArrayType(T)
* @note This uses the SanityChecks#getRandom
* @return the provided sorted array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] shuffle(KEY_TYPE[] array, int offset, int length) {
return shuffle(array, offset, length, SanityChecks.getRandom());
}
/**
* Simple Shuffle method for Arrays.
* @param array the elements that should be shuffled
* @param random the Random Number Generator that should be used for the shuffling
* @ArrayType(T)
* @return the provided sorted array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] shuffle(KEY_TYPE[] array, Random random) {
for(int i = array.length-1; i>=0;i--) {
int p = random.nextInt(i + 1);
KEY_TYPE t = array[i];
array[i] = array[p];
array[p] = t;
}
return array;
}
/**
* Simple Shuffle method for Arrays.
* @param array the elements that should be shuffled
* @param length the length of the array
* @param random the Random Number Generator that should be used for the shuffling
* @ArrayType(T)
* @return the provided sorted array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] shuffle(KEY_TYPE[] array, int length, Random random) {
return shuffle(array, 0, length, random);
}
/**
* Simple Shuffle method for Arrays.
* @param array the elements that should be shuffled
* @param offset the start array
* @param length the length of the array
* @param random the Random Number Generator that should be used for the shuffling
* @ArrayType(T)
* @return the provided sorted array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] shuffle(KEY_TYPE[] array, int offset, int length, Random random) {
for(int i = length-1; i>=0;i--) {
int p = offset + random.nextInt(i + 1);
KEY_TYPE t = array[offset+i];
array[offset+i] = array[p];
array[p] = t;
}
return array;
}
/**
* Simple Array Reversal method
* @param array the Array that should flip
* @ArrayType(T)
* @return the provided array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] reverse(KEY_TYPE[] array) {
return reverse(array, 0, array.length);
}
/**
* Simple Array Reversal method
* @param array the Array that should flip
* @param length the length of the array
* @ArrayType(T)
* @return the provided array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] reverse(KEY_TYPE[] array, int length) {
return reverse(array, 0, length);
}
/**
* Simple Array Reversal method
* @param array the Array that should flip
* @param length the length of the array
* @param offset the start of the array
* @ArrayType(T)
* @return the provided array
*/
public static GENERIC_KEY_BRACES KEY_TYPE[] reverse(KEY_TYPE[] array, int offset, int length) {
for (int i = offset, mid = offset + length >> 1, j = offset + length - 1; i < mid; i++, j--) {
KEY_TYPE temp = array[i];
array[i] = array[j];
array[j] = temp;
}
return array;
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Stable sort referres to Mergesort or Insertionsort
* @param array the array that needs to be sorted
* @ArrayType(T)
* @param comp the Comparator that decides the sorting order
*/
public static GENERIC_KEY_BRACES void stableSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
stableSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Stable sort referres to Mergesort or Insertionsort
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void stableSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
stableSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Stable sort referres to Mergesort or Insertionsort
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void stableSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
mergeSort(array, null, from, to, comp);
}
/**
* Sorts an array according to the natural ascending order,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Stable sort referres to Mergesort or Insertionsort
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void stableSort(KEY_TYPE[] array) {
stableSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Stable sort referres to Mergesort or Insertionsort
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void stableSort(KEY_TYPE[] array, int length) {
stableSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Stable sort referres to Mergesort or Insertionsort
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void stableSort(KEY_TYPE[] array, int from, int to) {
mergeSort(array, null, from, to);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Unstable sort referres to QuickSort or SelectionSort
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void unstableSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
unstableSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Unstable sort referres to QuickSort or SelectionSort
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void unstableSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
unstableSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Unstable sort referres to QuickSort or SelectionSort
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void unstableSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
quickSort(array, from, to, comp);
}
/**
* Sorts an array according to the natural ascending order,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Unstable sort referres to QuickSort or SelectionSort
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void unstableSort(KEY_TYPE[] array) {
unstableSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Unstable sort referres to QuickSort or SelectionSort
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void unstableSort(KEY_TYPE[] array, int length) {
unstableSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* Unstable sort referres to QuickSort or SelectionSort
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void unstableSort(KEY_TYPE[] array, int from, int to) {
quickSort(array, from, to);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Insertion Sort,
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void insertionSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
insertionSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Insertion Sort,
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void insertionSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
insertionSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Insertion Sort,
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void insertionSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
for (int i = from+1;i<to; i++) {
KEY_TYPE current = array[i];
int j = i - 1;
while(j >= from && comp.compare(current, array[j]) < 0) {
array[j+1] = array[j--];
}
array[j+1] = current;
}
}
/**
* Sorts an array according to the natural ascending order using InsertionSort,
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void insertionSort(KEY_TYPE[] array) {
insertionSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using InsertionSort,
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void insertionSort(KEY_TYPE[] array, int length) {
insertionSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order using InsertionSort,
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void insertionSort(KEY_TYPE[] array, int from, int to) {
for (int i = from+1;i<to; i++) {
KEY_TYPE current = array[i];
int j = i - 1;
while(j >= from && COMPAREABLE_TO_KEY(current, array[j]) < 0) {
array[j+1] = array[j--];
}
array[j+1] = current;
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Selection Sort,
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void selectionSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
selectionSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Selection Sort,
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void selectionSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
selectionSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Selection Sort,
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void selectionSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
for (int i = from; i < to; i++) {
KEY_TYPE min = array[i];
int minId = i;
for(int j = i+1; j < to; j++) {
if(comp.compare(array[j], min) < 0) {
min = array[j];
minId = j;
}
}
KEY_TYPE temp = array[i];
array[i] = min;
array[minId] = temp;
}
}
/**
* Sorts an array according to the natural ascending order using Selection Sort,
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void selectionSort(KEY_TYPE[] array) {
selectionSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Selection Sort,
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void selectionSort(KEY_TYPE[] array, int length) {
selectionSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Selection Sort,
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void selectionSort(KEY_TYPE[] array, int from, int to) {
for (int i = from; i < to; i++) {
KEY_TYPE min = array[i];
int minId = i;
for(int j = i+1; j < to; j++) {
if(COMPAREABLE_TO_KEY(array[j], min) < 0) {
min = array[j];
minId = j;
}
}
KEY_TYPE temp = array[i];
array[i] = min;
array[minId] = temp;
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void mergeSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
mergeSort(array, null, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void mergeSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
mergeSort(array, null, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param supp the auxillary array that is used to simplify the sorting
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void mergeSort(KEY_TYPE[] array, KEY_TYPE[] supp, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to, comp);
return;
}
if(supp == null) supp = Arrays.copyOf(array, to);
int mid = (from + to) >>> 1;
mergeSort(supp, array, from, mid, comp);
mergeSort(supp, array, mid, to, comp);
if(comp.compare(supp[mid - 1], supp[mid]) <= 0)
{
System.arraycopy(supp, from, array, from, to - from);
return;
}
for(int p = from, q = mid;from < to;from++) {
if(q >= to || p < mid && comp.compare(supp[p], supp[q]) < 0) array[from] = supp[p++];
else array[from] = supp[q++];
}
}
/**
* Sorts an array according to the natural ascending order using Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void mergeSort(KEY_TYPE[] array) {
mergeSort(array, null, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void mergeSort(KEY_TYPE[] array, int length) {
mergeSort(array, null, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param supp the auxillary array that is used to simplify the sorting
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void mergeSort(KEY_TYPE[] array, KEY_TYPE[] supp, int from, int to) {
2020-11-30 02:27:58 +01:00
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to);
return;
}
if(supp == null) supp = Arrays.copyOf(array, to);
int mid = (from + to) >>> 1;
mergeSort(supp, array, from, mid);
mergeSort(supp, array, mid, to);
if(COMPAREABLE_TO_KEY(supp[mid - 1], supp[mid]) <= 0)
{
System.arraycopy(supp, from, array, from, to - from);
return;
}
for(int p = from, q = mid;from < to;from++) {
if(q >= to || p < mid && COMPAREABLE_TO_KEY(supp[p], supp[q]) < 0) array[from] = supp[p++];
else array[from] = supp[q++];
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using a Parallel Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMergeSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
parallelMergeSort(array, null, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMergeSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
parallelMergeSort(array, null, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param supp the auxillary array that is used to simplify the sorting
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMergeSort(KEY_TYPE[] array, KEY_TYPE[] supp, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
if(SanityChecks.canParallelTask() && to - from >= PARALLEL_THRESHOLD) {
SanityChecks.invokeTask(new MergeSortActionCompBRACES(array, supp, from, to, comp));
return;
}
mergeSort(array, supp, from, to, comp);
}
/**
* Sorts an array according to the natural ascending order using Parallel Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMergeSort(KEY_TYPE[] array) {
2020-11-30 02:27:58 +01:00
parallelMergeSort(array, null, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Parallel Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMergeSort(KEY_TYPE[] array, int length) {
2020-11-30 02:27:58 +01:00
parallelMergeSort(array, null, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Parallel Merge Sort,
* This implementation was copied from <a href="https://github.com/vigna/fastutil">FastUtil</a> with a couple custom optimizations
* @param array the array that needs to be sorted
* @param supp the auxillary array that is used to simplify the sorting
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMergeSort(KEY_TYPE[] array, KEY_TYPE[] supp, int from, int to) {
2020-11-30 02:27:58 +01:00
if(SanityChecks.canParallelTask() && to - from >= PARALLEL_THRESHOLD) {
SanityChecks.invokeTask(new MergeSortActionBRACES(array, supp, from, to));
return;
}
mergeSort(array, supp, from, to);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array. It is in Very Unsorted Instances 50% slower then Mergesort, otherwise it as fast.
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void memFreeMergeSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
memFreeMergeSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array. It is in Very Unsorted Instances 50% slower then Mergesort, otherwise it as fast.
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void memFreeMergeSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
memFreeMergeSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array. It is in Very Unsorted Instances 50% slower then Mergesort, otherwise it as fast.
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void memFreeMergeSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to, comp);
return;
}
int mid = (from + to) >>> 1;
memFreeMergeSort(array, from, mid, comp);
memFreeMergeSort(array, mid, to, comp);
if(comp.compare(array[mid - 1], array[mid]) <= 0)
return;
for(int i = from, j = mid, compare;i < j && j < to;) {
if((compare = comp.compare(array[i], array[j])) < 0)
i++;
else if(compare == 0) swap(array, ++i, j);
else {
int k = j;
for(;k < to - 1 && comp.compare(array[i], array[k + 1]) > 0;k++);
if(j == k) {
swap(array, i++, j);
continue;
}
else if(j + 1 == k) {
KEY_TYPE value = array[j];
System.arraycopy(array, i, array, i+1, j - i);
array[i] = value;
i++;
j++;
continue;
}
KEY_TYPE[] data = NEW_KEY_ARRAY(k - j);
System.arraycopy(array, j, data, 0, data.length);
System.arraycopy(array, i, array, i+data.length, j - i);
System.arraycopy(data, 0, array, i, data.length);
i+=data.length;
j+=data.length;
}
}
}
/**
* Sorts an array according to the natural ascending order using Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void memFreeMergeSort(KEY_TYPE[] array) {
memFreeMergeSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void memFreeMergeSort(KEY_TYPE[] array, int length) {
memFreeMergeSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void memFreeMergeSort(KEY_TYPE[] array, int from, int to) {
2020-11-30 02:27:58 +01:00
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to);
return;
}
int mid = (from + to) >>> 1;
memFreeMergeSort(array, from, mid);
memFreeMergeSort(array, mid, to);
if(COMPAREABLE_TO_KEY(array[mid - 1], array[mid]) <= 0)
return;
for(int i = from, j = mid, comp;i < j && j < to;) {
if((comp = COMPAREABLE_TO_KEY(array[i], array[j])) < 0)
i++;
else if(comp == 0) swap(array, ++i, j);
else {
int k = j;
for(;k < to - 1 && COMPAREABLE_TO_KEY(array[i], array[k + 1]) > 0;k++);
if(j == k) {
swap(array, i++, j);
continue;
}
else if(j + 1 == k) {
KEY_TYPE value = array[j];
System.arraycopy(array, i, array, i+1, j - i);
array[i] = value;
i++;
j++;
continue;
}
KEY_TYPE[] data = NEW_KEY_ARRAY(k - j);
System.arraycopy(array, j, data, 0, data.length);
System.arraycopy(array, i, array, i+data.length, j - i);
System.arraycopy(data, 0, array, i, data.length);
i+=data.length;
j+=data.length;
}
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMemFreeMergeSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
parallelMemFreeMergeSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMemFreeMergeSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
parallelMemFreeMergeSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMemFreeMergeSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
if(SanityChecks.canParallelTask() && to - from >= PARALLEL_THRESHOLD) {
SanityChecks.invokeTask(new MemFreeMergeSortActionCompBRACES(array, from, to, comp));
return;
}
memFreeMergeSort(array, from, to, comp);
}
/**
* Sorts an array according to the natural ascending order using Parallel Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMemFreeMergeSort(KEY_TYPE[] array) {
2020-11-30 02:27:58 +01:00
parallelMemFreeMergeSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Parallel Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMemFreeMergeSort(KEY_TYPE[] array, int length) {
2020-11-30 02:27:58 +01:00
parallelMemFreeMergeSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Parallel Memory Free Merge Sort,
* This implementation is inspired by <a href="https://github.com/vigna/fastutil">FastUtil</a> original merge sort, but without the need to allocate a copy of the original Array.
* It is depending on the size and the unsorted level of the input array slower or almost as fast as normal merge sort. Depending on the test size i can be 0.5x slower (5000 elements) or 4x slower (50000 elements) under the assumtion that the array is in its worst case scenario.
* It does stack allocate tiny amounts of data for shifting around elements.
* @author Speiger
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void parallelMemFreeMergeSort(KEY_TYPE[] array, int from, int to) {
2020-11-30 02:27:58 +01:00
if(SanityChecks.canParallelTask() && to - from >= PARALLEL_THRESHOLD) {
SanityChecks.invokeTask(new MemFreeMergeSortActionBRACES(array, from, to));
return;
}
memFreeMergeSort(array, from, to);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void quickSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
quickSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void quickSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
quickSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void quickSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
int length = to - from;
if(length <= 0) return;
2020-11-30 02:27:58 +01:00
if(length < BASE_THRESHOLD) {
selectionSort(array, from, to, comp);
return;
}
KEY_TYPE pivot = array[length > 128 ? subMedium(array, from, from + (length / 2), to - 1, length / 8, comp) : medium(array, from, from + (length / 2), to - 1, comp)];
int a = from, b = a, c = to - 1, d = c;
for(int compare;;swap(array, b++, c--)) {
for(;b<=c && (compare = comp.compare(array[b], pivot)) <= 0;b++) {
if(compare == 0) swap(array, a++, b);
}
for(;c>=b && (compare = comp.compare(array[c], pivot)) >= 0;c--) {
if(compare == 0) swap(array, c, d--);
}
if(b>c) break;
}
swap(array, from, b, Math.min(a - from, b - a));
swap(array, b, to, Math.min(d - c, to - d - 1));
if((length = b - a) > 1) quickSort(array, from, from + length, comp);
if((length = d - c) > 1) quickSort(array, to - length, to, comp);
}
/**
* Sorts an array according to the natural ascending order using Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void quickSort(KEY_TYPE[] array) {
quickSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void quickSort(KEY_TYPE[] array, int length) {
quickSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
*/
public static GENERIC_KEY_BRACES void quickSort(KEY_TYPE[] array, int from, int to) {
int length = to - from;
if(length <= 0) return;
2020-11-30 02:27:58 +01:00
if(length < BASE_THRESHOLD) {
selectionSort(array, from, to);
return;
}
KEY_TYPE pivot = array[length > 128 ? subMedium(array, from, from + (length / 2), to - 1, length / 8) : medium(array, from, from + (length / 2), to - 1)];
int a = from, b = a, c = to - 1, d = c;
for(int comp = 0;;swap(array, b++, c--)) {
for(;b<=c && (comp = COMPAREABLE_TO_KEY(array[b], pivot)) <= 0;b++) {
if(comp == 0) swap(array, a++, b);
}
for(;c>=b && (comp = COMPAREABLE_TO_KEY(array[c], pivot)) >= 0;c--) {
if(comp == 0) swap(array, c, d--);
}
if(b>c) break;
}
swap(array, from, b, Math.min(a - from, b - a));
swap(array, b, to, Math.min(d - c, to - d - 1));
if((length = b - a) > 1) quickSort(array, from, from + length);
if((length = d - c) > 1) quickSort(array, to - length, to);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
*/
public static GENERIC_KEY_BRACES void parallelQuickSort(KEY_TYPE[] array, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
parallelQuickSort(array, 0, array.length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
*/
public static GENERIC_KEY_BRACES void parallelQuickSort(KEY_TYPE[] array, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
parallelQuickSort(array, 0, length, comp);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator using Parallel Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @param comp the Comparator that decides the sorting order
* @ArrayType(T)
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
*/
public static GENERIC_KEY_BRACES void parallelQuickSort(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp) {
2020-11-30 02:27:58 +01:00
if(SanityChecks.canParallelTask() && to - from >= PARALLEL_THRESHOLD) {
SanityChecks.invokeTask(new QuickSortActionCompBRACES(array, from, to, comp));
return;
}
quickSort(array, from, to, comp);
}
/**
* Sorts an array according to the natural ascending order using Parallel Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @ArrayType(T)
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
*/
public static GENERIC_KEY_BRACES void parallelQuickSort(KEY_TYPE[] array) {
2020-11-30 02:27:58 +01:00
parallelQuickSort(array, 0, array.length);
}
/**
* Sorts an array according to the natural ascending order using Parallel Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param length the maxmium size of the array to be sorted
* @ArrayType(T)
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
*/
public static GENERIC_KEY_BRACES void parallelQuickSort(KEY_TYPE[] array, int length) {
2020-11-30 02:27:58 +01:00
parallelQuickSort(array, 0, length);
}
/**
* Sorts an array according to the natural ascending order using Parallel Quick Sort,
* This implementation is a custom of <a href="https://github.com/vigna/fastutil">FastUtil</a> quicksort but with a different code structure,
* and that sorting Algorithm is based on the tuned quicksort adapted from Jon L. Bentley and M. DouglasMcIlroy, "Engineering a Sort Function", Software: Practice and Experience, 23(11), pages12491265, 1993.
* @param array the array that needs to be sorted
* @param from where the array should be sorted from
* @param to where the array should be sorted to
* @ArrayType(T)
* @note This parallelization is invoked through {@link SanityChecks#invokeTask} which the threadpool can be changed as needed
*/
public static GENERIC_KEY_BRACES void parallelQuickSort(KEY_TYPE[] array, int from, int to) {
2020-11-30 02:27:58 +01:00
if(SanityChecks.canParallelTask() && to - from >= PARALLEL_THRESHOLD) {
SanityChecks.invokeTask(new QuickSortActionBRACES(array, from, to));
return;
}
quickSort(array, from, to);
}
static GENERIC_KEY_BRACES void swap(KEY_TYPE[] a, int from, int to) {
KEY_TYPE t = a[from];
a[from] = a[to];
a[to] = t;
}
static GENERIC_KEY_BRACES void swap(KEY_TYPE[] a, int from, int to, int length) {
to -= length;
for(int i = 0;i<length;i++,swap(a, from++, to++));
}
static GENERIC_KEY_BRACES int subMedium(KEY_TYPE[] data, int a, int b, int c, int length, COMPARATOR KEY_GENERIC_TYPE comp) {
return medium(data, medium(data, a, a + length, a + (length * 2), comp), medium(data, b - length, b, b + length, comp), medium(data, c - (length * 2), c - length, c, comp), comp);
}
static GENERIC_KEY_BRACES int medium(KEY_TYPE[] data, int a, int b, int c, COMPARATOR KEY_GENERIC_TYPE comp) {
return comp.compare(data[a], data[b]) < 0 ? (comp.compare(data[b], data[c]) < 0 ? b : comp.compare(data[a], data[c]) < 0 ? c : a) : (comp.compare(data[b], data[c]) > 0 ? b : comp.compare(data[a], data[c]) > 0 ? c : a);
}
static GENERIC_KEY_BRACES int subMedium(KEY_TYPE[] data, int a, int b, int c, int length) {
return medium(data, medium(data, a, a + length, a + (length * 2)), medium(data, b - length, b, b + length), medium(data, c - (length * 2), c - length, c));
}
static GENERIC_KEY_BRACES int medium(KEY_TYPE[] data, int a, int b, int c) {
return COMPAREABLE_TO_KEY(data[a], data[b]) < 0 ? (COMPAREABLE_TO_KEY(data[b], data[c]) < 0 ? b : COMPAREABLE_TO_KEY(data[a], data[c]) < 0 ? c : a) : (COMPAREABLE_TO_KEY(data[b], data[c]) > 0 ? b : COMPAREABLE_TO_KEY(data[a], data[c]) > 0 ? c : a);
}
static class QuickSortAction KEY_GENERIC_TYPE extends RecursiveAction {
private static final long serialVersionUID = 0L;
KEY_TYPE[] array;
int from;
int to;
QuickSortAction(KEY_TYPE[] array, int from, int to)
{
this.array = array;
this.from = from;
this.to = to;
}
@Override
protected void compute()
{
int length = to - from;
if(length <= 0) return;
2020-11-30 02:27:58 +01:00
if(length < BASE_THRESHOLD) {
selectionSort(array, from, to);
return;
}
KEY_TYPE pivot = array[length > 128 ? subMedium(array, from, from + (length / 2), to - 1, length / 8) : medium(array, from, from + (length / 2), to - 1)];
int a = from, b = a, c = to - 1, d = c;
for(int comp = 0;;swap(array, b++, c--)) {
for(;b<=c && (comp = COMPAREABLE_TO_KEY(array[b], pivot)) <= 0;b++) {
if(comp == 0) swap(array, a++, b);
}
for(;c>=b && (comp = COMPAREABLE_TO_KEY(array[c], pivot)) >= 0;c--) {
if(comp == 0) swap(array, c, d--);
}
if(b>c) break;
}
swap(array, from, b, Math.min(a - from, b - a));
swap(array, b, to, Math.min(d - c, to - d - 1));
if(b - a > 1 && d - c > 1) invokeAll(new QuickSortActionBRACES(array, from, from + (b - a)), new QuickSortActionBRACES(array, to - (d - c), to));
else if(b - a > 1) new QuickSortActionBRACES(array, from, from + (b - a)).invoke();
else if(d - c > 1) new QuickSortActionBRACES(array, to - (d - c), to).invoke();
}
}
static class QuickSortActionComp KEY_GENERIC_TYPE extends RecursiveAction {
private static final long serialVersionUID = 0L;
KEY_TYPE[] array;
int from;
int to;
COMPARATOR KEY_GENERIC_TYPE comp;
QuickSortActionComp(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp)
{
this.array = array;
this.from = from;
this.to = to;
this.comp = comp;
}
@Override
protected void compute()
{
int length = to - from;
if(length <= 0) return;
2020-11-30 02:27:58 +01:00
if(length < BASE_THRESHOLD) {
selectionSort(array, from, to, comp);
return;
}
KEY_TYPE pivot = array[length > 128 ? subMedium(array, from, from + (length / 2), to - 1, length / 8, comp) : medium(array, from, from + (length / 2), to - 1, comp)];
int a = from, b = a, c = to - 1, d = c;
for(int compare;;swap(array, b++, c--)) {
for(;b<=c && (compare = comp.compare(array[b], pivot)) <= 0;b++) {
if(compare == 0) swap(array, a++, b);
}
for(;c>=b && (compare = comp.compare(array[c], pivot)) >= 0;c--) {
if(compare == 0) swap(array, c, d--);
}
if(b>c) break;
}
swap(array, from, b, Math.min(a - from, b - a));
swap(array, b, to, Math.min(d - c, to - d - 1));
if(b - a > 1 && d - c > 1) invokeAll(new QuickSortActionCompBRACES(array, from, from + (b - a), comp), new QuickSortActionCompBRACES(array, to - (d - c), to, comp));
else if(b - a > 1) new QuickSortActionCompBRACES(array, from, from + (b - a), comp).invoke();
else if(d - c > 1) new QuickSortActionCompBRACES(array, to - (d - c), to, comp).invoke();
}
}
2020-11-30 02:27:58 +01:00
static class MergeSortAction KEY_GENERIC_TYPE extends RecursiveAction {
2020-11-30 02:27:58 +01:00
private static final long serialVersionUID = 0L;
KEY_TYPE[] array;
KEY_TYPE[] supp;
int from;
int to;
MergeSortAction(KEY_TYPE[] array, KEY_TYPE[] supp, int from, int to)
{
this.array = array;
this.supp = supp;
this.from = from;
this.to = to;
}
@Override
protected void compute()
{
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to);
return;
}
if(supp == null) supp = Arrays.copyOf(array, to);
int mid = (from + to) >>> 1;
invokeAll(new MergeSortActionBRACES(supp, array, from, mid), new MergeSortActionBRACES(supp, array, mid, to));
if(COMPAREABLE_TO_KEY(supp[mid - 1], supp[mid]) <= 0)
2020-11-30 02:27:58 +01:00
{
System.arraycopy(supp, from, array, from, to - from);
return;
}
for(int p = from, q = mid;from < to;from++) {
if(q >= to || p < mid && COMPAREABLE_TO_KEY(supp[p], supp[q]) < 0) array[from] = supp[p++];
2020-11-30 02:27:58 +01:00
else array[from] = supp[q++];
}
}
}
static class MergeSortActionComp KEY_GENERIC_TYPE extends RecursiveAction {
private static final long serialVersionUID = 0L;
KEY_TYPE[] array;
KEY_TYPE[] supp;
int from;
int to;
COMPARATOR KEY_GENERIC_TYPE comp;
MergeSortActionComp(KEY_TYPE[] array, KEY_TYPE[] supp, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp)
{
this.array = array;
this.supp = supp;
this.from = from;
this.to = to;
this.comp = comp;
}
@Override
protected void compute()
{
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to, comp);
return;
}
if(supp == null) supp = Arrays.copyOf(array, to);
int mid = (from + to) >>> 1;
invokeAll(new MergeSortActionCompBRACES(supp, array, from, mid, comp), new MergeSortActionCompBRACES(supp, array, mid, to, comp));
if(comp.compare(supp[mid - 1], supp[mid]) <= 0)
{
System.arraycopy(supp, from, array, from, to - from);
return;
}
for(int p = from, q = mid;from < to;from++) {
if(q >= to || p < mid && comp.compare(supp[p], supp[q]) < 0) array[from] = supp[p++];
else array[from] = supp[q++];
}
}
}
static class MemFreeMergeSortAction KEY_GENERIC_TYPE extends RecursiveAction {
2020-11-30 02:27:58 +01:00
private static final long serialVersionUID = 0L;
KEY_TYPE[] array;
int from;
int to;
MemFreeMergeSortAction(KEY_TYPE[] array, int from, int to)
{
this.array = array;
this.from = from;
this.to = to;
}
@Override
protected void compute()
{
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to);
return;
}
int mid = (from + to) >>> 1;
invokeAll(new MemFreeMergeSortActionBRACES(array, from, mid), new MemFreeMergeSortActionBRACES(array, mid, to));
if(COMPAREABLE_TO_KEY(array[mid - 1], array[mid]) <= 0)
2020-11-30 02:27:58 +01:00
return;
for(int i = from, j = mid, comp;i < j && j < to;) {
if((comp = COMPAREABLE_TO_KEY(array[i], array[j])) < 0)
2020-11-30 02:27:58 +01:00
i++;
else if(comp == 0) swap(array, ++i, j);
else {
int k = j;
for(;k < to - 1 && COMPAREABLE_TO_KEY(array[i], array[k + 1]) > 0;k++);
if(j == k) {
swap(array, i++, j);
2020-11-30 02:27:58 +01:00
continue;
}
else if(j + 1 == k) {
KEY_TYPE value = array[j];
System.arraycopy(array, i, array, i+1, j - i);
array[i] = value;
i++;
j++;
continue;
}
KEY_TYPE[] data = NEW_KEY_ARRAY(k - j);
System.arraycopy(array, j, data, 0, data.length);
System.arraycopy(array, i, array, i+data.length, j - i);
System.arraycopy(data, 0, array, i, data.length);
i+=data.length;
j+=data.length;
2020-11-30 02:27:58 +01:00
}
}
}
}
static class MemFreeMergeSortActionComp KEY_GENERIC_TYPE extends RecursiveAction {
private static final long serialVersionUID = 0L;
KEY_TYPE[] array;
int from;
int to;
COMPARATOR KEY_GENERIC_TYPE comp;
MemFreeMergeSortActionComp(KEY_TYPE[] array, int from, int to, COMPARATOR KEY_GENERIC_TYPE comp)
{
this.array = array;
this.from = from;
this.to = to;
this.comp = comp;
}
@Override
protected void compute()
{
if(to - from < BASE_THRESHOLD) {
insertionSort(array, from, to, comp);
return;
}
int mid = (from + to) >>> 1;
invokeAll(new MemFreeMergeSortActionCompBRACES(array, from, mid, comp), new MemFreeMergeSortActionCompBRACES(array, mid, to, comp));
if(comp.compare(array[mid - 1], array[mid]) <= 0)
return;
for(int i = from, j = mid, compare;i < j && j < to;) {
if((compare = comp.compare(array[i], array[j])) < 0)
i++;
else if(compare == 0) swap(array, ++i, j);
else {
int k = j;
for(;k < to - 1 && comp.compare(array[i], array[k + 1]) > 0;k++);
if(j == k) {
swap(array, i++, j);
2020-11-30 02:27:58 +01:00
continue;
}
else if(j + 1 == k) {
KEY_TYPE value = array[j];
System.arraycopy(array, i, array, i+1, j - i);
array[i] = value;
i++;
j++;
continue;
}
KEY_TYPE[] data = NEW_KEY_ARRAY(k - j);
System.arraycopy(array, j, data, 0, data.length);
System.arraycopy(array, i, array, i+data.length, j - i);
System.arraycopy(data, 0, array, i, data.length);
i+=data.length;
j+=data.length;
2020-11-30 02:27:58 +01:00
}
}
}
}
}